Active Particles With Social Interactions

Clemens Bechinger

Tobias Bäuerle, Francois Lavergne, Hugo Wendehenne, Celia Lozano, Ruben Gomez-Solano, Robert Löffler

Fachbereich Physik & Centre for the Advanced Study of Collective Behaviour, University of Konstanz

How living systems organize into complex spatio-temporal patterns ?

- what information is exchanged ?
- reciprocal vs. <u>non-reciprocal</u> (social) interactions ?
- spatial range of communication ?
- instantaneous vs. time-delayed response ?

Self-Propulsion by Local Demixing

Hertlein, Helden, Gambassi, Dietrich, Bechinger, Nature 451, 172 (2008)

Volpe, Buttinoni, Vogt, Kümmerer, Bechinger, Soft Matter 7, 8810 (2011)

Compositional Current Flow Field

Gomez-Solano, Samin, Lozano, Ruedas-Batuecas, v. Roij, Bechinger Sci. Reports (2017).

Light-induced Active Motion

persistent random walk:

$$\Delta r^{2} = \left[4D_{0} + \frac{L^{2}}{\tau} \right] t + \frac{L^{2}}{2} \left[\exp\left(-\frac{2t}{\tau}\right) - 1 \right]$$

Response to external fields

Chemotaxis

Rheotaxis

Ribosome studio (2016)

5

Zaferani PNAS (2018)

Phototaxis

Burmeister Youtube (2016)

Gravitaxis

Response to External Fields

Gravitaxis

Phototaxis

sedimentation and propulsion

Hagen, Kümmel, Wittkowski, Takagi, Löwen, Bechinger Nat. Comm. 5, 4829 (2015) Lozano, ten Hagen, Löwen, Bechinger Nat. Comm. 7, 12828 (2016)

Diffusing Wave Paradox

Response of chemotacting amoebae to travelling chemical pulses

Lozano, Bechinger Nat. Comm. **10**, 2495 (2019) Geiseler, Hänggi, Marchesoni Sci. Rep. (2017)

Group formation and cohesion by visual perception-dependent motility

Visual Perception

2

1

r/R₀

3

visual perception:

$$P_{i}(\alpha) = \sum_{j \in V_{i}^{\alpha}} \frac{1}{2\pi r_{ij}} ; \{\alpha < \pi: \text{ non-reciprocal}\}$$

decision-making: "social behavior"

No active realignment of APs !

 $2R_0$ R₀: initial group size

$$lpha = 45^{\circ}$$

 $P^* = P^c_{lpha}$

cohesive groups without alignment interactions (no coexistence with dilute phase !!)

Experimental Realization

Bäuerle, Fischer, Speck, Bechinger Nat. Comm. 9, 3232 (2018)

Feedback Loop

laser pulse repetition

0

100 ms

fluid remixing

200 ms

- video capture rate (5 Hz)
- updating interaction rule C
- particle displacement $\leq 0.05\sigma$

Cohesion Mechanism

Variation of vision cone

Variation of reaction threshold

Lavergne, Wendehenne, Bäuerle, Bechinger, Science 364, 70 (2019)

Relation to Predator-Preys Interactions

Predators: small binocular field of vision α , round or vertically elongated pupils

 $h >> R_0$: response to group triggered far away

Prey: large field of vision α , horizontally elongated pupils

cohesion requires small P^* \rightarrow high alertness

Active particles as mechanical probes of glassy environments

ABM in crowded/glassy materials

50:50 mixture, 6.3µm & 4.4µm

 $\varphi = 0.73, \ v = 0 \mu m/s$

Rotational Diffusion Coefficient

Lozano, Gomez-Solano, Bechinger Nat. Mat. (2019)

Viscous vs. viscoelastic fluids

$$\boxed{\pi\sigma^{3}\eta_{\Theta}\dot{\Theta}(t) + \xi_{\Theta}(t) + T(t) = 0} \qquad D_{\Theta} = \frac{k_{B}T}{8\pi\eta_{\Theta}a^{2}}$$

$$Jeffrey fluid (\varphi < \varphi_{g}) \qquad G(t) = 2\eta_{\omega}\delta(t) + \frac{\eta_{0}(\varphi) - \eta_{\omega}}{\tau(\varphi)} \exp\left[-\left(\frac{t}{\tau(\varphi)}\right) - \frac{\eta_{0}(\varphi)}{\eta_{0}(\varphi)}\right]$$

$$\frac{\varphi_{g}(\varphi)}{\tau(\varphi)} \qquad G(t) = g_{2}(\varphi) + g_{1}(\varphi)\exp\left[-\left(\frac{t}{\tau_{SLS}(\varphi)}\right)\right]$$

$$Viscoelastic solid (\varphi > \varphi_{g}) \qquad G(t) = g_{2}(\varphi) + g_{1}(\varphi)\exp\left[-\left(\frac{t}{\tau_{SLS}(\varphi)}\right)\right]$$

$$\frac{\varphi_{g}(\varphi)}{\eta_{\omega}} \qquad \frac{\varphi_{g}(\varphi)}{\eta_{\omega}} \qquad$$

Summary

- Laser feed-back system to implement user-defined interactions rules in experimental system (variations of velocities, alignment interactions, time-delays, ...): social interactions
- Hybrid method between simulations and experiments
 - a priori knowledge of interaction rules required (as in numerical sim.)
 - equations of motion must not be known (opposed to simulations)
- \rightarrow all physical interactions (hydrodynamics, phoretic, steric) are taken into account.
- → extension to viscoelastic fluids (non-Markovion baths) which provide the natural habitat of bacteria and other microorganisms.
- → development of minimal rules for self-organization of microrobots without central control

